
Automatic Semantic Labelling of
Urban Areas using a rule-based

approach and realized with MeVisLab

Thijmen Speldekamp, Chris Fries, Caroline Gevaert, Markus Gerke
04-2015

Abstract
The article is about a project done at the ITC faculty of the University of
Twente. It describes a rule-based system and the actual implementation of
a model to perform an automatic semantic labelling of urban areas. There
will be a short introduction and some information about the software that
was used in this project and the subset data that was used. Followed by the
explanation of the model we will show and assess the result and the
accuracy assessment.

Online version and MeVisLab script available at
https://www.researchgate.net/publication/275639040_Automatic_Semantic_La
belling_of_Urban_Areas_using_a_rule-
based_approach_and_realized_with_MeVisLab

Introduction

This report is the result of the
individual final assignment from the
Geo Data Processing & Spatial
Information given at the ITC faculty
of the University of Twente. For this
assignment we looked at automatic
semantic labelling of very high
resolution airborne images (derived
ortho image and height model). The
assignment consisted of making a
model to perform this automatic
semantic labelling in a simple
program.

Method

MeVisLab
For this project a program called
MeVisLab
(http://www.mevislab.de/) was
used. This is a program originally
intended for medical image
processing and visualization. This
means that the program is not used
for its original purpose, which brings
new insights for the subject, but also
problems.

The helpguide in Mevislab doesn’t
contain much explanation
concerning problems you encounter
when producing a model for
automatic semantic labelling.

 1

https://www.researchgate.net/publication/275639040_Automatic_Semantic_Labelling_of_Urban_Areas_using_a_rule-based_approach_and_realized_with_MeVisLab%0c
https://www.researchgate.net/publication/275639040_Automatic_Semantic_Labelling_of_Urban_Areas_using_a_rule-based_approach_and_realized_with_MeVisLab%0c
https://www.researchgate.net/publication/275639040_Automatic_Semantic_Labelling_of_Urban_Areas_using_a_rule-based_approach_and_realized_with_MeVisLab%0c
http://www.mevislab.de/

The program uses modules, which
allows for a simplified way of
programming. The modules are
connected to each other to extract
information from one another. The
network that is created is the model
which in this case performed the
automatic semantic labelling.

Subsets
For the project the TOP (True Ortho
Photos) & DSM (Digital Surface
Models) files that was provided by
the ISPRS
(http://www2.isprs.org/commissio
ns/comm3/wg4/semantic-
labeling.html) were used. The ‘area
30’ subset, created by the ISPRS, was
used as the training sample, because
this was a subset which had a good
division between the four bigger
classes: impervious surfaces,
buildings, trees & low vegetation. It
also allowed for experimenting with
the car class, since this is the most
challenging.
We also made use of the ‘area 26’
subset to set some parameters in the
training sample, the reason
therefore was that there is water
present in this subset. For the testing
stage, the ‘area 32’ subset was used.

The Model:

Image processing

The TOP file is loaded into the model
via an image load operator and
hereafter dissected in three bands,
green, red, near infrared. Hereafter
two new arithmetic modules are
placed. The first one is to calculate
the NDVI values of the image. The
formula used in this arithmetic is:

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑅𝑅𝑅𝑅

𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑁𝑁𝑅𝑅𝑅𝑅 + 0,0001

In the formula NIR stands for near
infrared. The term “+ 0,0001” in the
denominator is used to prevent
errors in the data because of
dividing by 0.

The second arithmetic is to calculate
the Intensity. This will be used to
find shadows and very dark areas in
the image. The formula used here is
a simple average of the three input
images. This data is then sent to the
thresholds, which will be discussed
later.

The use of the NDVI is based on the
fact that green vegetation has a low
reflectance in the red region due to
chlorophyll and high reflectance in
NIR due to the cell structure. The
reflectance in the NIR is much higher
than in the red region. This is a
unique characteristic of vegetation.

So when you calculate the NDVI, if
NIR is much higher than red, you will
get a value closer to 1. This is why
green vegetation has higher NDVI
values and all other objects such as
cars, roads, etc. have low NDVI
values.

Another benefit is that it looks at the
relative difference between NIR and
red, so it is also capable of
identifying vegetation in shadows.
This is shown in figure 2. The same
counts for the low vegetation in the
image.

 2

http://www2.isprs.org/commissions/comm3/wg4/semantic-labeling.html
http://www2.isprs.org/commissions/comm3/wg4/semantic-labeling.html
http://www2.isprs.org/commissions/comm3/wg4/semantic-labeling.html

Figure 1: The modules used for the NDVI

Figure 2: The image from the NDVI output

The DSM file is also loaded via an
image load operator. The grey values
in this file are encoded as 32 bit float
values. But the DSM files in the data
set contain values, which don’t
represent a surface height. For
instance if a slope is present inside
an image a building on one side of
the image may be lower (in height)

than a road on the other side. For an
automatic sematic labelling we need
to adjust this.

Figure 3: The modules used for the DSM

In our model we used normalized
DSM data. Using the lastools-toolbox
(http://rapidlasso.com/lastools/),
the DSM image is divided into
ground and off-ground pixels. Then
for all off-ground pixels the closest
ground point is assumed to be the
relevant low point. The height is
then calculated by the subtraction of
the height from the closest ground
pixel from the off ground pixel its
assigned to. Using this method the
normalized DSM’s (nDSM) created
gave better values when working
with threshold segmentation of the
classes. The output from the DSM
group is also linked to the
thresholds1.

1 The nDSM tiles are available at
http://www.researchgate.net/profil
e/Markus_Gerke/publication/27045
0634_normalized_DSM_heights_enco
ded_in_dm_see_report/links/54aaaa

 3

Figure 4: The image of the normalized
DSM, which is used in the final model.

Shadows
Using a Euclidian distance module
and then a threshold for this
distance an area around buildings
was captured. Then using an interval
threshold that separated the low
reflectance areas of the image
together with the area around the
buildings the shadows of buildings
were separated. We did the same
thing for a somewhat smaller area
around trees and added these
shadows to the CastShadow
arithmetic. We thus captured all the
shadows of the image. We saw in our
attempts to segment the different
classes that shadows were classified
incorrectly. We decided to separate
the shadows on high areas from low
areas using another height
threshold. Then we used masks of
our road segment and masks of our
low vegetation segment to separate
shadows that were on roads and
shadows that were on low

bc0cf2ce2df668aac3?origin=publicat
ion_detail

vegetation. All these modules
produced three different outputs
from the shadow group. One for the
higher shadows (on buildings), one
for the lower shadows on roads and
one for the lower shadows on
vegetation.

Figure 5: The modules for the shadow
separation.

Classes

The different classes were set up by
a certain amount of modules per
class. In most classes some of these
modules are the same, but the
parameters used in them were
different since the classes had their
own features. Each class will now be
discussed.

Roads (or impervious surfaces)
The data from the NDVI and the DSM
are first processed by two threshold
modules, which exclude the all the
impervious surfaces in the subset.
The values used for this exclusion
are as follows:
NDVI threshold: -0.15 to 0.1
DSM threshold: 0 to 12
Hereafter these outputs are
combined in an arithmetic module.
This arithmetic module states: (a or
(b and c)) and !d.
These variables stand for the inputs
in the arithmetic module, where ‘a’
the output from the RoadShadows
arithmetic is. ‘b’ the output from the
NDVI threshold, ‘c‘ the output from
the DSM threshold and ‘d’ the output

 4

from the HighShadows arithmetic
output.
So not only the outcome from the
thresholds are taken into account,
the shadows on the roads are also
included and shadows that lie on the
low vegetation are not taken into
account.
From the Arithmetic module the
data goes to the morphology
modules. There are two of these
modules following each other. The
first module will perform a dilation
filter and the second one an erosion
filter. This thus preforms a closing
morphology of the road class.

Figure 7: The modules used for the
impervious surface class.

Buildings

The data from the NDVI and the DSM
comes in by the thresholds; which
has the following parameters:
NDVI threshold: -0.1 to 0.3
DSM threshold: 12 to MaxHeight
The arithmetic is here less
complicated. In the building
arithmetic the output from the NDVI
and the DSM are both taken into
account, and put through to the
morphology filters. In the case of the
buildings the morphology filters are
placed the other way around as
which was the case with the
impervious surfaces, so first the
erosion filter and then the dilation
filter. This causes an opening
morphology and we did this so
buildings would have less “sharp
edges” to the area around it. We did

an opening at the buildings and a
closing on the roads because it
would then be smoothed out the
best in our Interval filter we will
address later. The parameters on the
filters are set to higher values, 18
pixel size kernel, because buildings
have sharper edges. These values
will be later explained in the
morphology section.

Figure 8: The modules used for the
buildings class.

Low vegetation
With the low vegetation the setup is
more similar to the impervious
surfaces setup, this is because with
the low vegetation the shadows are
again taken in to account with the
classification. But it starts the same
with the NDVI and DSM data going in
the threshold, which uses the
following parameters.
NDVI threshold: 0.1 to 0.6
DSM threshold: 0 to 10
The following arithmetic states: a or
(b and c).
Which means that the shadows on
the low vegetation (a) are taken into
account. It further takes into account
the NDVI (b) and the DSM (c).
With the morphology filters the data
is first dilated and then eroded.
Although the filters are there, it is set
to a lower value, 3, since low
vegetation has few sharp edges.

 5

Figure 9: The modules used for the low
vegetation class.

Trees
The setup for the tree class is again
similar to that one of the buildings.
With the following parameters in the
thresholds:
NDVI threshold: 0.3 to 1
DSM threshold: 10 to MaxHeight
In the arithmetic both outputs from
the thresholds are put together and
send to the morphology filters.
These filters are set to a lower value,
9 for both filters. For the same
reason as for the low vegetation
filters, this is because the area that
are filtered away by the tree class,
has to be in most cases by assigned
to the low vegetation class.

Figure 10: The modules used for the tree
class.

Cars
The car class was the most difficult
one, since cars have a low area size,
not much height difference to roads
and have different NDVIs.

So the NDVI and height interval
thresholds were pretty wide to at
least capture all the cars. The
problem now was that the car class
would wrongly assign a lot of pixels

which belonged to other classes to
the car class. To counter this
problem we implemented a high
reflectance threshold. The really
high reflecting parts of the image
were classified as cars using a
threshold taking input of the
intensity image.

The height and NDVI thresholds are
as follows:
NDVI threshold: 0 to 0.3
DSM threshold: 0 to 18
This is then again sent to the
morphology filters. In the order
erosion and dilation which as in the
building class will perform an
opening morphology. The
parameters set on these filters are
low; cars themselves aren’t large
area objects.

Figure 11: The modules used for the car
class.

Clutter/background
The clutter class consists of
everything that isn’t included in the
previous mentioned classes.
Also the clutter class setup is similar
to the others, but in this case the
height is not taken in to account,
because this class has to pick up the
spots that were not classified by the
other classes. This also means that
the parameters on the morphology
filters are low.
Furthermore water is also included
in this class.

 6

Nevertheless the parameters in the
thresholds were set to the following
values, of which the DSM can be
ignored.
NDVI threshold: -1 to 0
In the following arithmetic module
there is the shadows on the roads
and on the low vegetation are not
included in the clutter class. This is
done by the statement in the
arithmetic module; a and !b and !c.

Figure 12: The modules used for the
clutter/background class.

Morphology
With the morphology filters the
edges of the projection of the classes
will be smoothened. To do this, there
are two Morphology modules
needed, one that does the erosion
filtering and the second one does the
dilation filtering. In the module the x
and y kernel can be altered to get
different results. This gives a region
to where the filtering is applied.
These are the values that are
mentioned in the classes. In the
project the values of the x and y
kernel were set to give the best
result.

In the two images below area 30 is
shown, first without morphology
filtering on the building, see figure
13, and then after applying the
morphology filter, see figure 14.

Figure 13: Image of the buildings of area
30 before morphology filters applied

Figure 14: Image of the buildings of area
30 with morphology filters applied

Displaying the classification
At the stage were we defined our
requirements for a pixel to be in a
class we created six different bit
images in which a pixel, which meets
the requirements, gets a value of 1, if
not, a value of 0. So we have six
different images. We want an image

 7

in which each pixel is assigned a
class and in this image we should be
able to see the different classes in
different colours.

To make the raster image, six more
thresholds were added to the model,
one for each class. In these
thresholds the statement was made
that when the input is 1, the output
value of the new thresholds will be
assigned a value. For the different
classes these values are:

Impervious Surface = 1
Buildings = 2
Low Vegetation = 3
Trees = 4
Cars = 5
Clutter/Background = 6

These outputs were then connected
to an arithmetic module, in which
the class numbers are added to each
other. This output gives an image of
the six classes. But for our automatic
sematic labelling we need each pixel
to only represent one class. When
we add our six images we then have
a problem when two or more of
these six input images overlap.
When that occurs, two or more
classes are added giving a value
higher than six, which doesn’t
represent a class or a value within
the interval of (0 – 6). It could also
occur that values were in the
interval (0 – 6) but was not a right
class value for that pixel. For
example, when one pixel has the
value of Impervious Surface added
to the value of Buildings it would
appear as low vegetation because
1 + 2 = 3.

To solve this, we first needed to filter
out pixels, which had multiple values
added to each other. To do this we

adjusted our arithmetic to the
following:

(a + b + c + d + e + f) −
(10 ∗ ((a ∗ b) + (a ∗ c) + (a ∗ d) + (a

∗ e) + (b ∗ c) + (b ∗ d)
+

(b ∗ e) + (b ∗ f) + (c ∗ d) + (c ∗ e)
+ (c ∗ f) + (d ∗ e)
+ (d ∗ f) +

 (e ∗ f)))

The first row is just the addition of
all the images. What happens in the
next rows is that when an image is
multiplied, it gets a new value on
that point and is then subtracted
from the total image after being
multiplied by 10. So what happens is
that all the raster points which
overlap now become a negative
number.

The working of the above mentioned
formula is shown in table 2. Because
the middle pixel is double assigned,
the following happens. The 1
multiplied by 2, is given the value -2,
this is then done excluded from the
added table after being multiplied by
10, which gives a result of 2 – 20 = -
18.

1 0 1 0 2 0 0 0 0
0 1 0 * 2 2 2 = 0 -

18
0

1 0 1 0 2 0 0 0 0
Table 1: example for the formula used for
filtering out the double assigned pixels.

To filter out these double assigned
pixels an IntervalMap module was
added. In this module the following
statements were made:
First there was stated that there
could be only six different classes,
after that the numbers below zero
that occurred in the image were
assigned to one of the six classes. For
example, when something has the
value -118, it could be an addition of
6 and 3, being clutter and low

 8

vegetation respectively, this value is
then assigned the value 3, because it
is more likely to be low vegetation
than clutter.

Figure 15: The modules needed for
visualising the six classes in a raster.

Results

Some example results from the
classification of the training and the
test subset are found in figure 16
&17. The colour class figuration is
according to the benchmark
requirements:

White: impervious surfaces
Blue: buildings
Light Blue: low vegetation
Green: trees
Yellow: cars
Red: clutter

Figure 16: TOP area 29

Figure 17: Classification result area 29

Accuracy assessment

The results on the ISPRS website
were assed and resulted in an
overall accuracy, on all validation
subsets, of 81.8%. Looking at the
individual classes the problem cases
are identified as: cars have an
average accuracy of 9%, most cars

 9

are missed and labelled as
impervious surface, in turn some
buildings got labelled as car entirely,
which is due to problems with the
DSM normalisation.
Besides we observe wrong
classifications in shadowed areas.

Conclusion
The conclusion from this project is
that the automatic semantic labelling
works pretty well, also given that the
Mevislab software is not meant for
this kind of application. The classes,
which have a larger areas like
impervious surfaces, buildings, low
vegetation and trees do rather well.
Compared to other results shown so
far for the benchmark, especially in
case of “car”, our approach
underperforms dramatically. Many
cars are not represented in the
nDSM at all (either they are not in
the DSM, or labelled as ground
points during terrain filtering), and
our approach relies on a certain
height. Compared to the supervised
approaches where also the
appearance is learnt, we did not
exploit the radiometric appearance
and this is the major shortfall.

The mevislab script is found in the
ResearchGate entry attached to this
report (profile of Markus Gerke).

 10

	Automatic Semantic Labelling of Urban Areas using a rule-based approach and realized with MeVisLab
	Abstract
	Introduction
	Method
	MeVisLab
	Subsets
	The Model:
	Image processing
	Shadows
	Classes
	Roads (or impervious surfaces)
	Buildings
	Low vegetation
	Trees
	Cars
	Clutter/background
	Morphology
	Displaying the classification

	Results
	Accuracy assessment

	Conclusion

