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Abstract  
The article is about a project done at the ITC faculty of the University of 
Twente. It describes a rule-based system and the actual implementation of 
a model to perform an automatic semantic labelling of urban areas. There 
will be a short introduction and some information about the software that 
was used in this project and the subset data that was used. Followed by the 
explanation of the model we will show and assess the result and the 
accuracy assessment.  
 
 
Online version and MeVisLab script available at 
https://www.researchgate.net/publication/275639040_Automatic_Semantic_La
belling_of_Urban_Areas_using_a_rule-
based_approach_and_realized_with_MeVisLab

Introduction 
 
This report is the result of the 
individual final assignment from the 
Geo Data Processing & Spatial 
Information given at the ITC faculty 
of the University of Twente. For this 
assignment we looked at automatic 
semantic labelling of very high 
resolution airborne images (derived 
ortho image and height model). The 
assignment consisted of making a 
model to perform this automatic 
semantic labelling in a simple 
program. 

Method 

MeVisLab 
For this project a program called 
MeVisLab 
(http://www.mevislab.de/)  was 
used. This is a program originally 
intended for medical image 
processing and visualization. This 
means that the program is not used 
for its original purpose, which brings 
new insights for the subject, but also 
problems.  
 
The helpguide in Mevislab doesn’t 
contain much explanation 
concerning problems you encounter 
when producing a model for 
automatic semantic labelling.  
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The program uses modules, which 
allows for a simplified way of 
programming. The modules are 
connected to each other to extract 
information from one another. The 
network that is created is the model 
which in this case performed the 
automatic semantic labelling. 

Subsets 
For the project the TOP (True Ortho 
Photos) & DSM (Digital Surface 
Models) files that was provided by 
the ISPRS 
(http://www2.isprs.org/commissio
ns/comm3/wg4/semantic-
labeling.html) were used. The ‘area 
30’ subset, created by the ISPRS, was 
used as the training sample, because 
this was a subset which had a good 
division between the four bigger 
classes: impervious surfaces, 
buildings, trees & low vegetation. It 
also allowed for experimenting with 
the car class, since this is the most 
challenging. 
We also made use of the  ‘area 26’ 
subset to set some parameters in the 
training sample, the reason 
therefore was that there is water 
present in this subset. For the testing 
stage, the ‘area 32’ subset was used. 

The Model: 

Image processing 
 
The TOP file is loaded into the model 
via an image load operator and 
hereafter dissected in three bands, 
green, red, near infrared. Hereafter 
two new arithmetic modules are 
placed. The first one is to calculate 
the NDVI values of the image. The 
formula used in this arithmetic is: 
 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  
𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑅𝑅𝑅𝑅

𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑁𝑁𝑅𝑅𝑅𝑅 + 0,0001
 

 

In the formula NIR stands for near 
infrared. The term “+ 0,0001” in the 
denominator is used to prevent 
errors in the data because of 
dividing by 0. 

 
The second arithmetic is to calculate 
the Intensity. This will be used to 
find shadows and very dark areas in 
the image. The formula used here is 
a simple average of the three input 
images. This data is then sent to the 
thresholds, which will be discussed 
later.  
 
The use of the NDVI is based on the 
fact that green vegetation has a low 
reflectance in the red region due to 
chlorophyll and high reflectance in 
NIR due to the cell structure. The 
reflectance in the NIR is much higher 
than in the red region. This is a 
unique characteristic of vegetation. 
 
So when you calculate the NDVI, if 
NIR is much higher than red, you will 
get a value closer to 1. This is why 
green vegetation has higher NDVI 
values and all other objects such as 
cars, roads, etc. have low NDVI 
values. 
 
Another benefit is that it looks at the 
relative difference between NIR and 
red, so it is also capable of 
identifying vegetation in shadows. 
This is shown in figure 2. The same 
counts for the low vegetation in the 
image. 
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Figure 1: The modules used for the NDVI 

 

 
Figure 2: The image from the NDVI output 

 
The DSM file is also loaded via an 
image load operator. The grey values 
in this file are encoded as 32 bit float 
values. But the DSM files in the data 
set contain values, which don’t 
represent a surface height. For 
instance if a slope is present inside 
an image a building on one side of 
the image may be lower (in height) 

than a road on the other side. For an 
automatic sematic labelling we need 
to adjust this.  
 

 
Figure 3: The modules used for the DSM 

 
In our model we used normalized 
DSM data. Using the lastools-toolbox 
(http://rapidlasso.com/lastools/), 
the DSM image is divided into 
ground and off-ground pixels. Then 
for all off-ground pixels the closest 
ground point is assumed to be the 
relevant low point. The height is 
then calculated by the subtraction of 
the height from the closest ground 
pixel from the off ground pixel its 
assigned to. Using this method the 
normalized DSM’s (nDSM) created 
gave better values when working 
with threshold segmentation of the 
classes. The output from the DSM 
group is also linked to the 
thresholds1.  

1 The nDSM tiles are available at 
http://www.researchgate.net/profil
e/Markus_Gerke/publication/27045
0634_normalized_DSM_heights_enco
ded_in_dm_see_report/links/54aaaa
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Figure 4: The image of the normalized 
DSM, which is used in the final model. 

Shadows  
Using a Euclidian distance module 
and then a threshold for this 
distance an area around buildings 
was captured. Then using an interval 
threshold that separated the low 
reflectance areas of the image 
together with the area around the 
buildings the shadows of buildings 
were separated. We did the same 
thing for a somewhat smaller area 
around trees and added these 
shadows to the CastShadow 
arithmetic. We thus captured all the 
shadows of the image. We saw in our 
attempts to segment the different 
classes that shadows were classified 
incorrectly. We decided to separate 
the shadows on high areas from low 
areas using another height 
threshold. Then we used masks of 
our road segment and masks of our 
low vegetation segment to separate 
shadows that were on roads and 
shadows that were on low 

bc0cf2ce2df668aac3?origin=publicat
ion_detail 

vegetation. All these modules 
produced three different outputs 
from the shadow group. One for the 
higher shadows (on buildings), one 
for the lower shadows on roads and 
one for the lower shadows on 
vegetation.  
 

 
Figure 5: The modules for the shadow 
separation. 

Classes 
 
The different classes were set up by 
a certain amount of modules per 
class. In most classes some of these 
modules are the same, but the 
parameters used in them were 
different since the classes had their 
own features. Each class will now be 
discussed.  

Roads (or impervious surfaces) 
The data from the NDVI and the DSM 
are first processed by two threshold 
modules, which exclude the all the 
impervious surfaces in the subset. 
The values used for this exclusion 
are as follows: 
NDVI threshold: -0.15 to 0.1 
DSM threshold: 0 to 12 
Hereafter these outputs are 
combined in an arithmetic module. 
This arithmetic module states: (a or 
(b and c)) and !d. 
These variables stand for the inputs 
in the arithmetic module, where ‘a’ 
the output from the RoadShadows 
arithmetic is. ‘b’ the output from the 
NDVI threshold, ‘c‘ the output from 
the DSM threshold and ‘d’ the output 
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from the HighShadows arithmetic 
output.  
So not only the outcome from the 
thresholds are taken into account, 
the shadows on the roads are also 
included and shadows that lie on the 
low vegetation are not taken into 
account. 
From the Arithmetic module the 
data goes to the morphology 
modules. There are two of these 
modules following each other. The 
first module will perform a dilation 
filter and the second one an erosion 
filter. This thus preforms a closing 
morphology of the road class. 
 

 
Figure 7: The modules used for the 
impervious surface class. 

Buildings 
 
The data from the NDVI and the DSM 
comes in by the thresholds; which 
has the following parameters: 
NDVI threshold: -0.1 to 0.3 
DSM threshold: 12 to MaxHeight 
The arithmetic is here less 
complicated. In the building 
arithmetic the output from the NDVI 
and the DSM are both taken into 
account, and put through to the 
morphology filters. In the case of the 
buildings the morphology filters are 
placed the other way around as 
which was the case with the 
impervious surfaces, so first the 
erosion filter and then the dilation 
filter. This causes an opening 
morphology and we did this so 
buildings would have less “sharp 
edges” to the area around it. We did 

an opening at the buildings and a 
closing on the roads because it 
would then be smoothed out the 
best in our Interval filter we will 
address later. The parameters on the 
filters are set to higher values, 18 
pixel size kernel,  because buildings 
have sharper edges. These values 
will be later explained in the 
morphology section. 
 

 
Figure 8: The modules used for the 
buildings class. 

Low vegetation 
With the low vegetation the setup is 
more similar to the impervious 
surfaces setup, this is because with 
the low vegetation the shadows are 
again taken in to account with the 
classification. But it starts the same 
with the NDVI and DSM data going in 
the threshold, which uses the 
following parameters. 
NDVI threshold: 0.1 to 0.6 
DSM threshold: 0 to 10 
The following arithmetic states: a or 
(b and c). 
Which means that the shadows on 
the low vegetation (a) are taken into 
account. It further takes into account 
the NDVI (b) and the DSM (c).  
With the morphology filters the data 
is first dilated and then eroded. 
Although the filters are there, it is set 
to a lower value, 3, since low 
vegetation has few sharp edges.  
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Figure 9: The modules used for the low 
vegetation class. 

Trees 
The setup for the tree class is again 
similar to that one of the buildings. 
With the following parameters in the 
thresholds: 
NDVI threshold: 0.3 to 1 
DSM threshold: 10 to MaxHeight 
In the arithmetic both outputs from 
the thresholds are put together and 
send to the morphology filters. 
These filters are set to a lower value, 
9 for both filters. For the same 
reason as for the low vegetation 
filters, this is because the area that 
are filtered away by the tree class, 
has to be in most cases by assigned 
to the low vegetation class. 
 

 
Figure 10: The modules used for the tree 
class. 

Cars 
The car class was the most difficult 
one, since cars have a low area size, 
not much height difference to roads 
and have different NDVIs. 
  
So the NDVI and height interval 
thresholds were pretty wide to at 
least capture all the cars.  The 
problem now was that the car class 
would wrongly assign a lot of pixels 

which belonged to other classes to 
the car class. To counter this 
problem we implemented a high 
reflectance threshold. The really 
high reflecting parts of the image 
were classified as cars using a 
threshold taking input of  the 
intensity image.  
 
The height and NDVI thresholds are 
as follows: 
NDVI threshold: 0 to 0.3 
DSM threshold: 0 to 18 
This is then again sent to the 
morphology filters. In the order 
erosion and dilation which as in the 
building class will perform an 
opening morphology. The 
parameters set on these filters are 
low; cars themselves aren’t large 
area objects. 
 
 

 
Figure 11: The modules used for the car 
class. 

Clutter/background 
The clutter class consists of 
everything that isn’t included in the 
previous mentioned classes. 
Also the clutter class setup is similar 
to the others, but in this case the 
height is not taken in to account, 
because this class has to pick up the 
spots that were not classified by the 
other classes. This also means that 
the parameters on the morphology 
filters are low. 
Furthermore water is also included 
in this class. 
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Nevertheless the parameters in the 
thresholds were set to the following 
values, of which the DSM can be 
ignored. 
NDVI threshold: -1 to 0 
In the following arithmetic module 
there is the shadows on the roads 
and on the low vegetation are not 
included in the clutter class. This is 
done by the statement in the 
arithmetic module; a and !b and !c. 
 

 
Figure 12: The modules used for the 
clutter/background class. 

Morphology 
With the morphology filters the 
edges of the projection of the classes 
will be smoothened. To do this, there 
are two Morphology modules 
needed, one that does the erosion 
filtering and the second one does the 
dilation filtering. In the module the x 
and y kernel can be altered to get 
different results. This gives a region 
to where the filtering is applied. 
These are the values that are 
mentioned in the classes. In the 
project the values of the x and y 
kernel were set to give the best 
result.  
 
In the two images below area 30 is 
shown, first without morphology 
filtering on the building, see figure 
13, and then after applying the 
morphology filter, see figure 14. 
 

 
Figure 13: Image of the buildings of area 
30 before morphology filters applied 

 
Figure 14: Image of the buildings of area 
30 with morphology filters applied 

Displaying the classification 
At the stage were we defined our 
requirements for a pixel to be in a 
class we created six different bit 
images in which a pixel, which meets 
the requirements, gets a value of 1, if 
not, a value of 0. So we have six 
different images. We want an image 
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in which each pixel is assigned a 
class and in this image we should be 
able to see the different classes in 
different colours.  
 
To make the raster image, six more 
thresholds were added to the model, 
one for each class. In these 
thresholds the statement was made 
that when the input is 1, the output 
value of the new thresholds will be 
assigned a value. For the different 
classes these values are: 
 
Impervious Surface = 1 
Buildings = 2 
Low Vegetation = 3 
Trees = 4 
Cars = 5 
Clutter/Background = 6  
 
These outputs were then connected 
to an arithmetic module, in which 
the class numbers are added to each 
other. This output gives an image of 
the six classes. But for our automatic 
sematic labelling we need each pixel 
to only represent one class. When 
we add our six images we then have 
a problem when two or more of 
these six input images overlap. 
When that occurs, two or more 
classes are added giving a value 
higher than six, which doesn’t 
represent a class or a value within 
the interval of (0 – 6). It could also 
occur that values were in the 
interval (0 – 6) but was not a right 
class value for that pixel. For 
example, when one pixel has the 
value of Impervious Surface added 
to the value of Buildings it would 
appear as low vegetation because  
1 + 2 = 3.  
 
To solve this, we first needed to filter 
out pixels, which had multiple values 
added to each other. To do this we 

adjusted our arithmetic to the 
following: 

(a +  b +  c +  d +  e +  f) −  
(10 ∗  ((a ∗  b)  +  (a ∗  c)  + (a ∗  d)  + (a 

∗  e)  +  (b ∗  c)  + (b ∗ d)  
+  

(b ∗  e) +  (b ∗  f) + (c ∗  d) +  (c ∗  e)
+ (c ∗  f) +  (d ∗  e)
+ (d ∗  f) + 

 (e ∗  f))) 
 
The first row is just the addition of 
all the images. What happens in the 
next rows is that when an image is 
multiplied, it gets a new value on 
that point and is then subtracted 
from the total image after being 
multiplied by 10. So what happens is 
that all the raster points which 
overlap now become a negative 
number. 
 
The working of the above mentioned 
formula is shown in table 2. Because 
the middle pixel is double assigned, 
the following happens. The 1 
multiplied by 2, is given the value -2, 
this is then done excluded from the 
added table after being multiplied by 
10, which gives a result of 2 – 20 = -
18. 
 
1 0 1  0 2 0  0 0 0 
0 1 0 * 2 2 2 = 0 -

18 
0 

1 0 1  0 2 0  0 0 0 
Table 1: example for the formula used for 
filtering out the double assigned pixels. 
  
To filter out these double assigned 
pixels an IntervalMap module was 
added. In this module the following 
statements were made: 
First there was stated that there 
could be only six different classes, 
after that the numbers below zero 
that occurred in the image were 
assigned to one of the six classes. For 
example, when something has the 
value -118, it could be an addition of 
6 and 3, being clutter and low 
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vegetation respectively, this value is 
then assigned the value 3, because it 
is more likely to be low vegetation 
than clutter. 
 

 
Figure 15: The modules needed for 
visualising the six classes in a raster. 

Results 
 
Some example results from the 
classification of the training and the 
test subset are found in figure 16 
&17. The colour class figuration is 
according to the benchmark 
requirements: 
 
White: impervious surfaces 
Blue: buildings 
Light Blue: low vegetation 
Green: trees 
Yellow: cars 
Red: clutter 
 

 

Figure 16: TOP area 29  

 
Figure 17: Classification result area 29 

Accuracy assessment 
 
The results on the ISPRS website 
were assed and resulted in an 
overall accuracy, on all validation 
subsets, of 81.8%. Looking at the 
individual classes the problem cases 
are identified as: cars have an 
average accuracy of 9%, most cars 
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are missed and labelled as 
impervious surface, in turn some 
buildings got labelled as car entirely, 
which is due to problems with the 
DSM normalisation.  
Besides we observe wrong 
classifications in shadowed areas.   

Conclusion 
The conclusion from this project is 
that the automatic semantic labelling 
works pretty well, also given that the 
Mevislab software is not meant for 
this kind of application. The classes, 
which have a larger areas like 
impervious surfaces, buildings, low 
vegetation and trees do rather well. 
Compared to other results shown so 
far for the benchmark, especially in 
case of “car”, our approach 
underperforms dramatically. Many 
cars are not represented in the 
nDSM at all (either they are not in 
the DSM, or labelled as ground 
points during terrain filtering), and 
our approach relies on a certain 
height. Compared to the supervised 
approaches where also the 
appearance is learnt, we did not 
exploit the radiometric appearance 
and this is the major shortfall. 
 
The mevislab script is found in the 
ResearchGate entry attached to this 
report (profile of Markus Gerke). 
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